Übungsblatt 3

Aufgabe 1

9,02 g NO und 4,80 g O₂ werden in einem 10l-Kolben zur Reaktion gebracht.

- a) Stellen Sie die Reaktionsgleichung auf.
- b) Berechnen Sie den Druck bei 23°C vor und nach der Reaktion (vollständiger Umsatz).

Aufgabe 2

Berechnen Sie die fehlende Größen in der folgenden Tabelle mithilfe des idealen Gasgesetzes $(R = 8,31451 \text{ J mol}^{-1} \text{ K}^{-1})$.

<u> </u>			
p	V	n	T
1,5 bar		3 mol	105 K
500 mbar	11		100°C
	$2,73 \text{ m}^3$	0,26 mol	298 K
1 atm		30 mmol	40 °C
0,15 Pa	300 ml	$9,5\cdot 10^{15}$	

Aufgabe 3

Definieren Sie die folgenden Begriffe: Anion, Kation, Elektronenkonfiguration, isoelektronisch, Edelgaskonfiguration, Ionisierungsenthalpie, Elektronenaffinität, Gitterenthalpie.

Aufgabe 4

Welche Ionen haben die folgenden Elektronenkonfigurationen?

- a) $[He]: 1s^2$.
- b) [Ne]: $1s^2 2s^2 2p^6$.
- c) [Kr]: $1s^22s^22p^63s^23 p^63d^{10}4s^24p^6$.

Aufgabe 5

Berechnen Sie die Gitterenthalpie von CsCl aus den gegeben Werten.

 $\Delta_{\text{sub}}H$ (Cs) = 78 kJ mol⁻¹

 $IE (Cs) = 375 \text{ kJ mol}^{-1}$

 $\Delta_{\rm f}H$ (CsCl) = -443 kJ mol⁻¹

 Δ_{Diss} H (Cl₂) = 243 kJ mol⁻¹

 $EA (Cl) = -349 \text{ kJ mol}^{-1}$

Aufgabe 6

Nennen Sie einige Ionen, die keine Edelgaskonfiguration haben.